0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i12[0] →* i12[1])∧(i90[0] →* i90[1])∧(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0] →* TRUE)∧(i35[0] →* i35[1]))
(1) -> (0), if ((i90[1] + 1 →* i90[0])∧(i35[1] + 1 →* i35[0])∧(i12[1] →* i12[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i12[0] →* i12[1])∧(i90[0] →* i90[1])∧(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0] →* TRUE)∧(i35[0] →* i35[1]))
(1) -> (0), if ((i90[1] + 1 →* i90[0])∧(i35[1] + 1 →* i35[0])∧(i12[1] →* i12[0]))
(1) (i12[0]=i12[1]∧i90[0]=i90[1]∧&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0]))=TRUE∧i35[0]=i35[1] ⇒ LOAD858(i12[0], i35[0], i90[0])≥NonInfC∧LOAD858(i12[0], i35[0], i90[0])≥COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])∧(UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥))
(2) (>(i12[0], i35[0])=TRUE∧>=(i90[0], 0)=TRUE∧>(i12[0], i90[0])=TRUE ⇒ LOAD858(i12[0], i35[0], i90[0])≥NonInfC∧LOAD858(i12[0], i35[0], i90[0])≥COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])∧(UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥))
(3) (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i12[0] ≥ 0∧i90[0] ≥ 0∧i35[0] + i12[0] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (i12[0] ≥ 0∧i90[0] ≥ 0∧i35[0] + i12[0] + [-1]i90[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(8) (i12[0] ≥ 0∧i90[0] ≥ 0∧[-1]i35[0] + i12[0] + [-1]i90[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (i35[0] + i90[0] + i12[0] ≥ 0∧i90[0] ≥ 0∧i12[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(10) (COND_LOAD858(TRUE, i12[1], i35[1], i90[1])≥NonInfC∧COND_LOAD858(TRUE, i12[1], i35[1], i90[1])≥LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))∧(UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥))
(11) ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(12) ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(13) ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(14) ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD858(x1, x2, x3)) = [1] + [-1]x3 + [-1]x2 + [2]x1
POL(COND_LOAD858(x1, x2, x3, x4)) = [1] + [-1]x4 + [-1]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))
LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])
LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer