(0) Obligation:

JBC Problem based on JBC Program:
No human-readable program information known.

Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaA7

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 229 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load858(i12, i35, i90) → Cond_Load858(i90 >= 0 && i12 > i90 && i12 > i35, i12, i35, i90)
Cond_Load858(TRUE, i12, i35, i90) → Load858(i12, i35 + 1, i90 + 1)
The set Q consists of the following terms:
Load858(x0, x1, x2)
Cond_Load858(TRUE, x0, x1, x2)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load858(i12, i35, i90) → Cond_Load858(i90 >= 0 && i12 > i90 && i12 > i35, i12, i35, i90)
Cond_Load858(TRUE, i12, i35, i90) → Load858(i12, i35 + 1, i90 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0], i12[0], i35[0], i90[0])
(1): COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], i35[1] + 1, i90[1] + 1)

(0) -> (1), if ((i12[0]* i12[1])∧(i90[0]* i90[1])∧(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0]* TRUE)∧(i35[0]* i35[1]))


(1) -> (0), if ((i90[1] + 1* i90[0])∧(i35[1] + 1* i35[0])∧(i12[1]* i12[0]))



The set Q consists of the following terms:
Load858(x0, x1, x2)
Cond_Load858(TRUE, x0, x1, x2)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0], i12[0], i35[0], i90[0])
(1): COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], i35[1] + 1, i90[1] + 1)

(0) -> (1), if ((i12[0]* i12[1])∧(i90[0]* i90[1])∧(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0]* TRUE)∧(i35[0]* i35[1]))


(1) -> (0), if ((i90[1] + 1* i90[0])∧(i35[1] + 1* i35[0])∧(i12[1]* i12[0]))



The set Q consists of the following terms:
Load858(x0, x1, x2)
Cond_Load858(TRUE, x0, x1, x2)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD858(i12, i35, i90) → COND_LOAD858(&&(&&(>=(i90, 0), >(i12, i90)), >(i12, i35)), i12, i35, i90) the following chains were created:
  • We consider the chain LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0]), COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1)) which results in the following constraint:

    (1)    (i12[0]=i12[1]i90[0]=i90[1]&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0]))=TRUEi35[0]=i35[1]LOAD858(i12[0], i35[0], i90[0])≥NonInfC∧LOAD858(i12[0], i35[0], i90[0])≥COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])∧(UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i12[0], i35[0])=TRUE>=(i90[0], 0)=TRUE>(i12[0], i90[0])=TRUELOAD858(i12[0], i35[0], i90[0])≥NonInfC∧LOAD858(i12[0], i35[0], i90[0])≥COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])∧(UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i12[0] + [-1] + [-1]i35[0] ≥ 0∧i90[0] ≥ 0∧i12[0] + [-1] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i12[0] ≥ 0∧i90[0] ≥ 0∧i35[0] + i12[0] + [-1]i90[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i12[0] ≥ 0∧i90[0] ≥ 0∧i35[0] + i12[0] + [-1]i90[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)


    (8)    (i12[0] ≥ 0∧i90[0] ≥ 0∧[-1]i35[0] + i12[0] + [-1]i90[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [(-1)bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (9)    (i35[0] + i90[0] + i12[0] ≥ 0∧i90[0] ≥ 0∧i12[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)







For Pair COND_LOAD858(TRUE, i12, i35, i90) → LOAD858(i12, +(i35, 1), +(i90, 1)) the following chains were created:
  • We consider the chain COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1)) which results in the following constraint:

    (10)    (COND_LOAD858(TRUE, i12[1], i35[1], i90[1])≥NonInfC∧COND_LOAD858(TRUE, i12[1], i35[1], i90[1])≥LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))∧(UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD858(i12, i35, i90) → COND_LOAD858(&&(&&(>=(i90, 0), >(i12, i90)), >(i12, i35)), i12, i35, i90)
    • (i12[0] ≥ 0∧i90[0] ≥ 0∧i35[0] + i12[0] + [-1]i90[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
    • (i35[0] + i90[0] + i12[0] ≥ 0∧i90[0] ≥ 0∧i12[0] ≥ 0∧i35[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i90[0] + [bni_11]i35[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)

  • COND_LOAD858(TRUE, i12, i35, i90) → LOAD858(i12, +(i35, 1), +(i90, 1))
    • ((UIncreasing(LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD858(x1, x2, x3)) = [1] + [-1]x3 + [-1]x2 + [2]x1   
POL(COND_LOAD858(x1, x2, x3, x4)) = [1] + [-1]x4 + [-1]x3 + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], +(i35[1], 1), +(i90[1], 1))

The following pairs are in Pbound:

LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])

The following pairs are in P:

LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(&&(&&(>=(i90[0], 0), >(i12[0], i90[0])), >(i12[0], i35[0])), i12[0], i35[0], i90[0])

There are no usable rules.

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD858(i12[0], i35[0], i90[0]) → COND_LOAD858(i90[0] >= 0 && i12[0] > i90[0] && i12[0] > i35[0], i12[0], i35[0], i90[0])


The set Q consists of the following terms:
Load858(x0, x1, x2)
Cond_Load858(TRUE, x0, x1, x2)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD858(TRUE, i12[1], i35[1], i90[1]) → LOAD858(i12[1], i35[1] + 1, i90[1] + 1)


The set Q consists of the following terms:
Load858(x0, x1, x2)
Cond_Load858(TRUE, x0, x1, x2)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE